Applying Supervised Learning Algorithms and a New Feature Selection Method to Predict Coronary Artery Disease

نویسنده

  • Hubert Haoyang Duan
چکیده

From a fresh data science perspective, this thesis discusses the prediction of coronary artery disease based on genetic variations at the DNA base pair level, called SingleNucleotide Polymorphisms (SNPs), collected from the Ontario Heart Genomics Study (OHGS). First, the thesis explains two commonly used supervised learning algorithms, the k-Nearest Neighbour (k-NN) and Random Forest classifiers, and includes a complete proof that the k-NN classifier is universally consistent in any finite dimensional normed vector space. Second, the thesis introduces two dimensionality reduction steps, Random Projections, a known feature extraction technique based on the Johnson-Lindenstrauss lemma, and a new method termed Mass Transportation Distance (MTD) Feature Selection for discrete domains. Then, this thesis compares the performance of Random Projections with the k-NN classifier against MTD Feature Selection and Random Forest, for predicting artery disease based on accuracy, the F-Measure, and area under the Receiver Operating Characteristic (ROC) curve. The comparative results demonstrate that MTD Feature Selection with Random Forest is vastly superior to Random Projections and k-NN. The Random Forest classifier is able to obtain an accuracy of 0.6660 and an area under the ROC curve of 0.8562 on the OHGS genetic dataset, when 3335 SNPs are selected by MTD Feature Selection for classification. This area is considerably better than the previous high score of 0.608 obtained by Davies et al. in 2010 on the same dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Hybrid Method for Improving the Performance of Myocardial Infarction Prediction

Abstract Introduction: Myocardial Infarction, also known as heart attack, normally occurs due to such causes as smoking, family history, diabetes, and so on. It is recognized as one of the leading causes of death in the world. Therefore, the present study aimed to evaluate the performance of classification models in order to predict Myocardial Infarction, using a feature selection method tha...

متن کامل

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

The prediction of lymphedema via the combination of the selected data mining algorithms

Background: Breast cancer is the second leading cause of cancer death in women, after lung cancer. Due to the importance of predicting this disease, the use of data mining methods in medical research is more significant than before. Data mining algorithms can be a great help in preventing the development of lymphedema in patients. The aim Of this study was to create a diagnosis system that can ...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1402.0459  شماره 

صفحات  -

تاریخ انتشار 2014